Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 227(1)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38531678

RESUMO

Genetic screens for recessive alleles induce mutations, make the mutated chromosomes homozygous, and then assay those homozygotes for the phenotype of interest. When screening for genes required for female meiosis, the phenotype of interest has typically been nondisjunction from chromosome segregation errors. As this requires that mutant females be viable and fertile, any mutants that are lethal or sterile when homozygous cannot be recovered by this approach. To overcome these limitations, we have screened the VALIUM22 collection of RNAi constructs that target germline-expressing genes in a vector optimized for germline expression by driving RNAi with GAL4 under control of a germline-specific promoter (nanos or mat-alpha4). This allowed us to test genes that would be lethal if knocked down in all cells, and by examining unfertilized metaphase-arrested mature oocytes, we could identify defects in sterile females. After screening >1,450 lines of the collection for two different defects (chromosome congression and the hypoxic sequestration of Mps1-GFP to ooplasmic filaments), we obtained multiple hits for both phenotypes, identified novel meiotic phenotypes for genes that had been previously characterized in other processes, and identified the first phenotypes to be associated with several previously uncharacterized genes.


Assuntos
Drosophila melanogaster , Meiose , Interferência de RNA , Animais , Feminino , Meiose/genética , Drosophila melanogaster/genética , Fenótipo , Oócitos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Testes Genéticos/métodos , Masculino
2.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293152

RESUMO

Genetic screens for recessive alleles induce mutations, make the mutated chromosomes homozygous, and then assay those homozygotes for the phenotype of interest. When screening for genes required for female meiosis, the phenotype of interest has typically been nondisjunction from chromosome segregation errors. As this requires that mutant females be viable and fertile, any mutants that are lethal or sterile when homozygous cannot be recovered by this approach. To overcome these limitations, our lab has screened the VALIUM22 collection produced by the Harvard TRiP Project, which contains RNAi constructs targeting genes known to be expressed in the germline in a vector optimized for germline expression. By driving RNAi with GAL4 under control of a germline-specific promoter (nanos or mat-alpha4), we can test genes that would be lethal if knocked down in all cells, and by examining unfertilized metaphase-arrested mature oocytes, we can identify defects associated with genes whose knockdown results in sterility or causes other errors besides nondisjunction. We screened this collection to identify genes that disrupt either of two phenotypes when knocked down: the ability of meiotic chromosomes to congress to a single mass at the end of prometaphase, and the sequestration of Mps1-GFP to ooplasmic filaments in response to hypoxia. After screening >1450 lines of the collection, we obtained multiple hits for both phenotypes, identified novel meiotic phenotypes for genes that had been previously characterized in other processes, and identified the first phenotypes to be associated with several previously uncharacterized genes.

3.
PLoS Genet ; 19(2): e1010598, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36809339

RESUMO

Transposable elements (TE) are selfish genetic elements that can cause harmful mutations. In Drosophila, it has been estimated that half of all spontaneous visible marker phenotypes are mutations caused by TE insertions. Several factors likely limit the accumulation of exponentially amplifying TEs within genomes. First, synergistic interactions between TEs that amplify their harm with increasing copy number are proposed to limit TE copy number. However, the nature of this synergy is poorly understood. Second, because of the harm posed by TEs, eukaryotes have evolved systems of small RNA-based genome defense to limit transposition. However, as in all immune systems, there is a cost of autoimmunity and small RNA-based systems that silence TEs can inadvertently silence genes flanking TE insertions. In a screen for essential meiotic genes in Drosophila melanogaster, a truncated Doc retrotransposon within a neighboring gene was found to trigger the germline silencing of ald, the Drosophila Mps1 homolog, a gene essential for proper chromosome segregation in meiosis. A subsequent screen for suppressors of this silencing identified a new insertion of a Hobo DNA transposon in the same neighboring gene. Here we describe how the original Doc insertion triggers flanking piRNA biogenesis and local gene silencing. We show that this local gene silencing occurs in cis and is dependent on deadlock, a component of the Rhino-Deadlock-Cutoff (RDC) complex, to trigger dual-strand piRNA biogenesis at TE insertions. We further show how the additional Hobo insertion leads to de-silencing by reducing flanking piRNA biogenesis triggered by the original Doc insertion. These results support a model of TE-mediated gene silencing by piRNA biogenesis in cis that depends on local determinants of transcription. This may explain complex patterns of off-target gene silencing triggered by TEs within populations and in the laboratory. It also provides a mechanism of sign epistasis among TE insertions, illuminates the complex nature of their interactions and supports a model in which off-target gene silencing shapes the evolution of the RDC complex.


Assuntos
Drosophila melanogaster , RNA de Interação com Piwi , Animais , Drosophila melanogaster/genética , Elementos de DNA Transponíveis , RNA Interferente Pequeno/genética , Drosophila/genética , Inativação Gênica
4.
G3 (Bethesda) ; 10(5): 1765-1774, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32217631

RESUMO

The physical connections established by recombination are normally sufficient to ensure proper chromosome segregation during female Meiosis I. However, nonexchange chromosomes (such as the Muller F element or "dot" chromosome in D. melanogaster) can still segregate accurately because they remain connected by heterochromatic tethers. A recent study examined female meiosis in the closely related species D. melanogaster and D. simulans, and found a nearly twofold difference in the mean distance the obligately nonexchange dot chromosomes were separated during Prometaphase. That study proposed two speculative hypotheses for this difference, the first being the amount of heterochromatin in each species, and the second being the species' differing tolerance for common inversions in natural populations. We tested these hypotheses by examining female meiosis in 12 additional Drosophila species. While neither hypothesis had significant support, we did see 10-fold variation in dot chromosome sizes, and fivefold variation in the frequency of chromosomes out on the spindle, which were both significantly correlated with chromosome separation distances. In addition to demonstrating that heterochromatin abundance changes chromosome behavior, this implies that the duration of Prometaphase chromosome movements must be proportional to the size of the F element in these species. Additionally, we examined D. willistoni, a species that lacks a free dot chromosome. We observed that chromosomes still moved out on the meiotic spindle, and the F element was always positioned closest to the spindle poles. This result is consistent with models where one role of the dot chromosomes is to help organize the meiotic spindle.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Segregação de Cromossomos , Drosophila/genética , Feminino , Meiose/genética , Fuso Acromático
5.
G3 (Bethesda) ; 6(11): 3749-3755, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27672111

RESUMO

Drosophila stocks bearing compound chromosomes, single molecules of DNA that carry the genomic complement of two chromosomes, are useful tools for studying meiosis and mitosis. However, these stocks cannot easily be crossed to stocks with regular chromosomes, due to the lethality of the resulting whole-chromosome aneuploidy. This prevents the examination of interesting genetic variants in a compound chromosome background. Methods to circumvent this difficulty have included the use of triploid females or nondisjunction (caused by either cold-induced microtubule depolymerization or meiotic mutants). Here, we present a new approach for crossing compound chromosomes that takes advantage of the nonhomologous segregations that result when multiple chromosomes in the same genome are prevented from meiotic crossing over by heterozygosity for balancer chromosomes. This approach gives higher yields of the desired progeny in fewer generations of crossing. Using this technique, we have created and validated stocks carrying both a compound-X and compound-2, as well as compound-2 stocks carrying the meiotic mutant nod.

7.
Genetics ; 199(1): 73-83, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25406466

RESUMO

The abundance and composition of heterochromatin changes rapidly between species and contributes to hybrid incompatibility and reproductive isolation. Heterochromatin differences may also destabilize chromosome segregation and cause meiotic drive, the non-Mendelian segregation of homologous chromosomes. Here we use a range of genetic and cytological assays to examine the meiotic properties of a Drosophila simulans chromosome 4 (sim-IV) introgressed into D. melanogaster. These two species differ by ∼12-13% at synonymous sites and several genes essential for chromosome segregation have experienced recurrent adaptive evolution since their divergence. Furthermore, their chromosome 4s are visibly different due to heterochromatin divergence, including in the AATAT pericentromeric satellite DNA. We find a visible imbalance in the positioning of the two chromosome 4s in sim-IV/mel-IV heterozygote and also replicate this finding with a D. melanogaster 4 containing a heterochromatic deletion. These results demonstrate that heterochromatin abundance can have a visible effect on chromosome positioning during meiosis. Despite this effect, however, we find that sim-IV segregates normally in both diplo and triplo 4 D. melanogaster females and does not experience elevated nondisjunction. We conclude that segregation abnormalities and a high level of meiotic drive are not inevitable byproducts of extensive heterochromatin divergence. Animal chromosomes typically contain large amounts of noncoding repetitive DNA that nevertheless varies widely between species. This variation may potentially induce non-Mendelian transmission of chromosomes. We have examined the meiotic properties and transmission of a highly diverged chromosome 4 from a foreign species within the fruitfly Drosophila melanogaster. This chromosome has substantially less of a simple sequence repeat than does D. melanogaster 4, and we find that this difference results in altered positioning when chromosomes align during meiosis. Yet this foreign chromosome segregates at normal frequencies, demonstrating that chromosome segregation can be robust to major differences in repetitive DNA abundance.


Assuntos
Segregação de Cromossomos , Cromossomos de Insetos/genética , Drosophila melanogaster/genética , Heterocromatina/genética , Meiose/genética , Animais , Feminino , Transferência Genética Horizontal , Repetições de Microssatélites
8.
G3 (Bethesda) ; 5(2): 175-82, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25491942

RESUMO

One essential role of the first meiotic division is to reduce chromosome number by half. Although this is normally accomplished by segregating homologous chromosomes from each other, it is possible for a genome to have one or more chromosomes that lack a homolog (such as compound chromosomes), or have chromosomes with multiple potential homologs (such as in XXY females). These configurations complete meiosis but engage in unusual segregation patterns. In Drosophila melanogaster females carrying two compound chromosomes, the compounds can accurately segregate from each other, a process known as heterologous segregation. Similarly, in XXY females, when the X chromosomes fail to cross over, they often undergo secondary nondisjunction, where both Xs segregate away from the Y. Although both of these processes have been known for decades, the orientation mechanisms involved are poorly understood. Taking advantage of the recent discovery of chromosome congression in female meiosis I, we have examined a number of different aberrant chromosome configurations. We show that these genotypes complete congression normally, with their chromosomes bioriented at metaphase I arrest at the same rates that they segregate, indicating that orientation must be established during prometaphase I before congression. We also show that monovalent chromosomes can move out on the prometaphase I spindle, but the dot 4 chromosomes appear required for this movement. Finally, we show that, similar to achiasmate chromosomes, heterologous chromosomes can be connected by chromatin threads, suggesting a mechanism for how heterochromatic homology establishes these unusual biorientation patterns.


Assuntos
Cromossomos de Insetos , Drosophila melanogaster/genética , Meiose/genética , Aberrações dos Cromossomos Sexuais , Animais , Feminino
9.
Genetics ; 193(2): 443-51, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23222652

RESUMO

The model of Drosophila female meiosis I was recently revised by the discovery that chromosome congression precedes metaphase I arrest. Use of the prior framework to interpret data from meiotic mutants led to the conclusion that chromosome segregation errors (nondisjunction, NDJ) occurred when nonexchange chromosomes moved out on the spindle in a maloriented configuration and became trapped there at metaphase arrest. The discovery that congression returns nonexchange chromosomes to the metaphase plate invalidates this interpretation and raises the question of what events actually do lead to NDJ. To address this, we have assayed an allelic series of ald (mps1) meiotic mutants that complete congression at wild-type rates, but have widely varying NDJ rates in an otherwise isogenic background, as well as a nod mutant background that primarily undergoes loss of chromosome 4. Using genetic assays to measure NDJ rates, and FISH assays to measure chromosome malorientation rates in metaphase-arrested oocytes, shows that these two rates are highly correlated across ald mutants, suggesting that malorientation during congression commits these chromosomes to eventually nondisjoin. Likewise, the rate of chromosome loss observed in nod is similar to the rate at which these chromosomes fail to associate with the main chromosome mass. Together these results provide a proximal mechanism for how these meiotic mutants cause NDJ and chromosome loss and improve our understanding of how prometaphase chromosome congression relates to anaphase chromosome segregation.


Assuntos
Cromossomos de Insetos/genética , Drosophila/genética , Meiose/genética , Não Disjunção Genética/genética , Animais , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos/genética , Drosophila/citologia , Proteínas de Drosophila/genética , Feminino , Cinesinas/genética , Metáfase , Mutação , Proteínas Serina-Treonina Quinases/genética , Fatores Sexuais
10.
G3 (Bethesda) ; 2(2): 249-60, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22384403

RESUMO

Although traditional genetic assays have characterized the pattern of crossing over across the genome in Drosophila melanogaster, these assays could not precisely define the location of crossovers. Even less is known about the frequency and distribution of noncrossover gene conversion events. To assess the specific number and positions of both meiotic gene conversion and crossover events, we sequenced the genomes of male progeny from females heterozygous for 93,538 X chromosomal single-nucleotide and InDel polymorphisms. From the analysis of the 30 F1 hemizygous X chromosomes, we detected 15 crossover and 5 noncrossover gene conversion events. Taking into account the nonuniform distribution of polymorphism along the chromosome arm, we estimate that most oocytes experience 1 crossover event and 1.6 gene conversion events per X chromosome pair per meiosis. An extrapolation to the entire genome would predict approximately 5 crossover events and 8.6 conversion events per meiosis. Mean gene conversion tract lengths were estimated to be 476 base pairs, yielding a per nucleotide conversion rate of 0.86 × 10(-5) per meiosis. Both of these values are consistent with estimates of conversion frequency and tract length obtained from studies of rosy, the only gene for which gene conversion has been studied extensively in Drosophila. Motif-enrichment analysis revealed a GTGGAAA motif that was enriched near crossovers but not near gene conversions. The low-complexity and frequent occurrence of this motif may in part explain why, in contrast to mammalian systems, no meiotic crossover hotspots have been found in Drosophila.

11.
Genetics ; 186(2): 505-13, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20660647

RESUMO

Many advances in the understanding of meiosis have been made by measuring how often errors in chromosome segregation occur. This process of nondisjunction can be studied by counting experimental progeny, but direct measurement of nondisjunction rates is complicated by not all classes of nondisjunctional progeny being viable. For X chromosome nondisjunction in Drosophila female meiosis, all of the normal progeny survive, while nondisjunctional eggs produce viable progeny only if fertilized by sperm that carry the appropriate sex chromosome. The rate of nondisjunction has traditionally been estimated by assuming a binomial process and doubling the number of observed nondisjunctional progeny, to account for the inviable classes. However, the correct way to derive statistics (such as confidence intervals or hypothesis testing) by this approach is far from clear. Instead, we use the multinomial-Poisson hierarchy model and demonstrate that the old estimator is in fact the maximum-likelihood estimator (MLE). Under more general assumptions, we derive asymptotic normality of this estimator and construct confidence interval and hypothesis testing formulae. Confidence intervals under this framework are always larger than under the binomial framework, and application to published data shows that use of the multinomial approach can avoid an apparent type 1 error made by use of the binomial assumption. The current study provides guidance for researchers designing genetic experiments on nondisjunction and improves several methods for the analysis of genetic data.


Assuntos
Segregação de Cromossomos , Cromossomos de Insetos/genética , Drosophila/genética , Não Disjunção Genética , Cromossomo X/genética , Animais , Mapeamento Cromossômico , Intervalos de Confiança , Cruzamentos Genéticos , Interpretação Estatística de Dados , Feminino , Funções Verossimilhança , Meiose , Distribuição de Poisson , Probabilidade , Recombinação Genética
12.
PLoS One ; 4(10): e7544, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19847308

RESUMO

BACKGROUND: The protein kinases Mps1 and Polo, which are required for proper cell cycle regulation in meiosis and mitosis, localize to numerous ooplasmic filaments during prometaphase in Drosophila oocytes. These filaments first appear throughout the oocyte at the end of prophase and are disassembled after egg activation. METHODOLOGY/PRINCIPAL FINDINGS: We showed here that Mps1 and Polo proteins undergo dynamic and reversible localization to static ooplasmic filaments as part of an oocyte-specific response to hypoxia. The observation that Mps1- and Polo-associated filaments reappear in the same locations through multiple cycles of oxygen deprivation demonstrates that underlying structural components of the filaments must still be present during normoxic conditions. Using immuno-electron microscopy, we observed triple-helical binding of Mps1 to numerous electron-dense filaments, with the gold label wrapped around the outside of the filaments like a garland. In addition, we showed that in live oocytes the relocalization of Mps1 and Polo to filaments is sensitive to injection of collagenase, suggesting that the structural components of the filaments are composed of collagen-like fibrils. However, the collagen-like genes we have been able to test so far (vkg and CG42453) did not appear to be associated with the filaments, demonstrating that the collagenase-sensitive component of the filaments is one of a number of other Drosophila proteins bearing a collagenase cleavage site. Finally, as hypoxia is known to cause Mps1 protein to accumulate at kinetochores in syncytial embryos, we also show that GFP-Polo accumulates at both kinetochores and centrosomes in hypoxic syncytial embryos. CONCLUSIONS/SIGNIFICANCE: These findings identify both a novel cellular structure (the ooplasmic filaments) as well as a new localization pattern for Mps1 and Polo and demonstrate that hypoxia affects Polo localization in Drosophila.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Hipóxia , Oócitos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Ciclo Celular , Colagenases/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Meiose , Mitose , Modelos Biológicos , Prometáfase
13.
Nat Cell Biol ; 11(8): 917-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19648975

RESUMO

In Caernorhabditis elegans, homologue pairing is mediated by specialized regions near one end of each chromosome in conjunction with zinc finger (ZnF)-bearing proteins. Families of repeated sequences that are enriched within these regions have now been identified. By recruiting their cognate ZnF-bearing proteins, these regions promote pairing and synapsis.


Assuntos
Caenorhabditis elegans/genética , Pareamento Cromossômico/genética , Meiose/genética , Cromossomo X/genética , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Modelos Biológicos , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
14.
Genetics ; 182(1): 25-32, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19307605

RESUMO

Next-generation methods for rapid whole-genome sequencing enable the identification of single-base-pair mutations in Drosophila by comparing a chromosome bearing a new mutation to the unmutagenized sequence. To validate this approach, we sought to identify the molecular lesion responsible for a recessive EMS-induced mutation affecting egg shell morphology by using Illumina next-generation sequencing. After obtaining sufficient sequence from larvae that were homozygous for either wild-type or mutant chromosomes, we obtained high-quality reads for base pairs composing approximately 70% of the third chromosome of both DNA samples. We verified 103 single-base-pair changes between the two chromosomes. Nine changes were nonsynonymous mutations and two were nonsense mutations. One nonsense mutation was in a gene, encore, whose mutations produce an egg shell phenotype also observed in progeny of homozygous mutant mothers. Complementation analysis revealed that the chromosome carried a new functional allele of encore, demonstrating that one round of next-generation sequencing can identify the causative lesion for a phenotype of interest. This new method of whole-genome sequencing represents great promise for mutant mapping in flies, potentially replacing conventional methods.


Assuntos
Drosophila melanogaster/genética , Metanossulfonato de Etila/farmacologia , Estudo de Associação Genômica Ampla , Genoma , Mutagênicos/farmacologia , Mutação/efeitos dos fármacos , Animais , Mapeamento Cromossômico , Análise Mutacional de DNA , Homozigoto , Polimorfismo de Nucleotídeo Único
15.
PLoS Genet ; 5(1): e1000348, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19165317

RESUMO

In Drosophila oocytes achiasmate homologs are faithfully segregated to opposite poles at meiosis I via a process referred to as achiasmate homologous segregation. We observed that achiasmate homologs display dynamic movements on the meiotic spindle during mid-prometaphase. An analysis of living prometaphase oocytes revealed both the rejoining of achiasmate X chromosomes initially located on opposite half-spindles and the separation toward opposite poles of two X chromosomes that were initially located on the same half spindle. When the two achiasmate X chromosomes were positioned on opposite halves of the spindle their kinetochores appeared to display proper co-orientation. However, when both Xs were located on the same half spindle their kinetochores appeared to be oriented in the same direction. Thus, the prometaphase movement of achiasmate chromosomes is a congression-like process in which the two homologs undergo both separation and rejoining events that result in the either loss or establishment of proper kinetochore co-orientation. During this period of dynamic chromosome movement, the achiasmate homologs were connected by heterochromatic threads that can span large distances relative to the length of the developing spindle. Additionally, the passenger complex proteins Incenp and Aurora B appeared to localize to these heterochromatic threads. We propose that these threads assist in the rejoining of homologs and the congression of the migrating achiasmate homologs back to the main chromosomal mass prior to metaphase arrest.


Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/fisiologia , Heterocromatina/química , Oscilometria , Animais , Segregação de Cromossomos , Cromossomos/metabolismo , Heterocromatina/metabolismo , Modelos Biológicos , Modelos Genéticos , Oócitos/metabolismo , Prometáfase , Fuso Acromático
16.
Genetics ; 181(1): 177-85, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18984573

RESUMO

While many functional elements of the meiotic process are well characterized in model organisms, the genetic basis of most of the natural phenotypic variation observed in meiotic pathways has not been determined. To begin to address this issue, we characterized patterns of polymorphism and divergence in the protein-coding regions of 33 genes across 31 lines of Drosophila melanogaster and 6 lines of Drosophila simulans. We sequenced genes known to be involved in chromosome segregation, recombination, DNA repair, and related heterochromatin binding. As expected, we found several of the genes to be highly conserved, consistent with purifying selection. However, a subset of genes showed patterns of polymorphism and divergence typical of other types of natural selection. Moreover, several intriguing differences between the two Drosophila lineages were evident: along the D. simulans lineage we consistently found evidence of adaptive protein evolution, whereas along the D. melanogaster lineage several loci exhibited patterns consistent with the maintenance of protein variation.


Assuntos
Evolução Biológica , Drosophila/genética , Genes de Insetos , Genética Populacional , Meiose/genética , Animais , Sequência de Bases , Variação Genética , Heterozigoto , Modelos Genéticos , Dados de Sequência Molecular , Mutação/genética , Filogenia
17.
Dev Biol ; 325(1): 122-8, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18977343

RESUMO

Chiasmata established by recombination are normally sufficient to ensure accurate chromosome segregation during meiosis by physically interlocking homologs until anaphase I. Drosophila melanogaster female meiosis is unusual in that it is both exceptionally tolerant of nonexchange chromosomes and competent in ensuring their proper segregation. As first noted by Puro and Nokkala [Puro, J., Nokkala, S., 1977. Meiotic segregation of chromosomes in Drosophila melanogaster oocytes. A cytological approach. Chromosoma 63, 273-286], nonexchange chromosomes move precociously towards the poles following formation of a bipolar spindle. Indeed, metaphase arrest has been previously defined as the stage at which nonexchange homologs are symmetrically positioned between the main chromosome mass and the poles of the spindle. Here we use studies of both fixed images and living oocytes to show that the stage in which achiasmate chromosomes are separated from the main mass does not in fact define metaphase arrest, but rather is a component of an extended prometaphase. At the end of prometaphase, the nonexchange chromosomes retract into the main chromosome mass, which is tightly repackaged with properly co-oriented centromeres. This repackaged state is the true metaphase arrest configuration in Drosophila female meiosis.


Assuntos
Pareamento Cromossômico , Cromossomos/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Metáfase , Oócitos/citologia , Oócitos/metabolismo , Envelhecimento , Animais , Sobrevivência Celular , DNA/metabolismo , Feminino , Hibridização in Situ Fluorescente , Fuso Acromático/metabolismo
18.
PLoS Biol ; 5(12): e323, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18052611

RESUMO

Many meiotic systems in female animals include a lengthy arrest in G2 that separates the end of pachytene from nuclear envelope breakdown (NEB). However, the mechanisms by which a meiotic cell can arrest for long periods of time (decades in human females) have remained a mystery. The Drosophila Matrimony (Mtrm) protein is expressed from the end of pachytene until the completion of meiosis I. Loss-of-function mtrm mutants result in precocious NEB. Coimmunoprecipitation experiments reveal that Mtrm physically interacts with Polo kinase (Polo) in vivo, and multidimensional protein identification technology mass spectrometry analysis reveals that Mtrm binds to Polo with an approximate stoichiometry of 1:1. Mutation of a Polo-Box Domain (PBD) binding site in Mtrm ablates the function of Mtrm and the physical interaction of Mtrm with Polo. The meiotic defects observed in mtrm/+ heterozygotes are fully suppressed by reducing the dose of polo+, demonstrating that Mtrm acts as an inhibitor of Polo. Mtrm acts as a negative regulator of Polo during the later stages of G2 arrest. Indeed, both the repression of Polo expression until stage 11 and the inactivation of newly synthesized Polo by Mtrm until stage 13 play critical roles in maintaining and properly terminating G2 arrest. Our data suggest a model in which the eventual activation of Cdc25 by an excess of Polo at stage 13 triggers NEB and entry into prometaphase.


Assuntos
Proteínas de Drosophila/metabolismo , Fase G2 , Meiose , Proteínas Serina-Treonina Quinases/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Centrômero/genética , Segregação de Cromossomos/genética , Regulação para Baixo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Dosagem de Genes/genética , Regulação da Expressão Gênica no Desenvolvimento , Heterozigoto , Dados de Sequência Molecular , Mutação/genética , Membrana Nuclear/metabolismo , Estágio Paquíteno , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Fuso Acromático/metabolismo
19.
PLoS Genet ; 3(7): e113, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17630834

RESUMO

The Drosophila gene ald encodes the fly ortholog of mps1, a conserved kinetochore-associated protein kinase required for the meiotic and mitotic spindle assembly checkpoints. Using live imaging, we demonstrate that oocytes lacking Ald/Mps1 (hereafter referred to as Ald) protein enter anaphase I immediately upon completing spindle formation, in a fashion that does not allow sufficient time for nonexchange homologs to complete their normal partitioning to opposite half spindles. This observation can explain the heightened sensitivity of nonexchange chromosomes to the meiotic effects of hypomorphic ald alleles. In one of the first studies of the female meiotic kinetochore, we show that Ald localizes to the outer edge of meiotic kinetochores after germinal vesicle breakdown, where it is often observed to be extended well away from the chromosomes. Ald also localizes to numerous filaments throughout the oocyte. These filaments, which are not observed in mitotic cells, also contain the outer kinetochore protein kinase Polo, but not the inner kinetochore proteins Incenp or Aurora-B. These filaments polymerize during early germinal vesicle breakdown, perhaps as a means of storing excess outer kinetochore kinases during early embryonic development.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila/citologia , Drosophila/genética , Meiose/genética , Proteínas Quinases/genética , Anáfase/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Genes de Insetos , Cinetocoros/metabolismo , Meiose/fisiologia , Mitose/genética , Modelos Genéticos , Mutação , Oócitos/citologia , Oócitos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases
20.
Fly (Austin) ; 1(3): 172-81, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18820465

RESUMO

Using an FLP/FRT-based method to create germline clones, we screened Drosophila chromosome arms 2L and 3R for new female meiotic mutants. The screen was designed to recover mutants with severe effects on meiotic exchange and/or segregation. This screen yielded 11 new mutants, including six alleles of previously known meiotic genes (c(2)M and ald/mps1). The remaining five mutants appear to define at least four new genes whose ablation results in severe meiotic defects. Three of the novel meiotic mutants were identified at the molecular level. Two of these, mcm5(A7) and trem(F9), define roles in meiotic recombination, while a third, cona(A12), is important for synaptonemal complex assembly. Surprisingly, five of the nine mutants for which the lesion has been identified at the molecular level are not the result of mutations characteristic of EMS mutagenesis, but rather due to the insertion of the transposable element Doc. This study demonstrates the utility of germline clone-based screens for the discovery of strong meiotic mutants, including mutations in essential genes, and the use of molecular genetic techniques to map the loci.


Assuntos
Drosophila melanogaster/genética , Mutação em Linhagem Germinativa , Alelos , Animais , Cruzamentos Genéticos , Feminino , Genes de Insetos , Testes Genéticos/métodos , Masculino , Meiose/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...